Correlations between active zone ultrastructure and synaptic function studied with freeze-fracture of physiologically identified neuromuscular junctions.
نویسندگان
چکیده
The active zone is a unique presynaptic membrane specialization that is believed to be the site of neurotransmitter release. To examine directly the relationship between active zone ultrastructure and synaptic efficacy, frog neuromuscular junctions were studied with a new technique combining electrophysiology, light microscopy, and freeze-fracture of identified single muscle fibers. This technique allows correlations to be made between quantal content (measured in low Ca2+ and high Mg2+ Ringer solution), endplate size, and active zone structure at the same neuromuscular junctions. By measuring physiological and morphological variables at the same junctions, the validity of structure-function correlations is significantly improved. Synaptic quantal content in 91 physiologically identified muscle fibers varied considerably and was only poorly correlated with endplate size, as shown in previous studies. To measure the total length of endplate branches, either a modified cholinesterase stain or rhodamine-labeled peanut agglutinin stain was used. When the same identified muscle fibers were freeze-fractured, active zones were exposed in 17 junctions. In a replica that contained a large part of one nerve terminal, there was no detectable gradient in active zone structure along the length of 3 different nerve terminal branches identifiable with both light and electron microscopy. The results from these 17 identified junctions indicate that quantal content per unit terminal length is positively correlated with the amount of active zone per unit terminal length. The estimated total active zone length and total number of active zone particles per junction are also positively correlated with the quantal content in these identified junctions. This study suggests that active zone size and spacing are better indicators of transmitter release than is endplate size and that the active zone may play an important role in regulating synaptic efficacy at the neuromuscular junction.
منابع مشابه
Assessing ultrastructure of crustacean and insect neuromuscular junctions.
Motor nerve terminals of arthropods provide excellent models for study of synaptic transmission, and their ultrastructure can be investigated in the same endings from which physiological recordings have been obtained. An experimental procedure for marking a recording site for subsequent ultrastructural analysis is described. The most commonly used procedure for ultrastructural analysis has been...
متن کاملSingle-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals.
We used high-resolution fluorescence imaging and single-pixel optical fluctuation analysis to estimate the opening probability of individual voltage-gated calcium (Ca(2+)) channels during an action potential and the number of such Ca(2+) channels within active zones of frog neuromuscular junctions. Analysis revealed ∼36 Ca(2+) channels within each active zone, similar to the number of docked sy...
متن کاملCrucial Role of Drosophila Neurexin in Proper Active Zone Apposition to Postsynaptic Densities, Synaptic Growth, and Synaptic Transmission
Neurexins have been proposed to function as major mediators of the coordinated pre- and postsynaptic apposition. However, key evidence for this role in vivo has been lacking, particularly due to gene redundancy. Here, we have obtained null mutations in the single Drosophila neurexin gene (dnrx). dnrx loss of function prevents the normal proliferation of synaptic boutons at glutamatergic neuromu...
متن کاملDifferential expression of active zone proteins in neuromuscular junctions suggests functional diversification.
Nerve terminals of the central nervous system (CNS) contain specialized release sites for synaptic vesicles, referred to as active zones. They are characterized by electron-dense structures that are tightly associated with the presynaptic plasma membrane and organize vesicle docking and priming sites. Recently, major protein constituents of active zones have been identified, including the prote...
متن کاملFreeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. III. A morphometric analysis of the number and diameter of intramembrane particles
The intramembrane particles on the presynaptic membrane and on the membrane of synaptic vesicles were studied at freeze-fractured neuromuscular junctions of the frog. The particles on the P face of the presynaptic membrane belong to two major classes: small particles with diameters less than 9 nm and large particles with diameters between 9 and 13 nm. In addition, there were a few extralarge pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 7 11 شماره
صفحات -
تاریخ انتشار 1987